Меню Рубрики

Методика обследования эндокринной системы у детей. Лабораторные и инструментальные методы исследования эндокринной функции

Эндокринная система, или система внутренней сек­реции, состоит из желез внутренней секреции, названных так пото­му, что они выделяют специфические продукты своей деятельно­сти - гормоны - непосредственно во внутреннюю среду организма, в кровь. Этих желез в организме восемь: щитовидная, около- или паращитовидная, зобная (вилочковая), гипофиз, эпифиз (или шиш­ковидная железа), надпочечники (надпочечные железы), поджелу­дочная и половые железы (рис. 67).

Общая функция эндокринной системы сводится к осуществле­нию химической регуляции в организме, установлению связи меж­ду его органами и системами и поддержанию их функций на опре­деленном уровне.

Гормоны эндокринных желез - вещества с очень высокой био­логической активностью, т. е. действующие в очень малых дозах. Вместе с ферментами и витаминами они относятся к так называе­мым биокатализаторам. Кроме того, гормоны обладают специфи­ческим действием - одни из них оказывают влияние на определен­ные органы, другие управляют определенными процессами в тка­нях организма.

Железы внутренней секреции участвуют в процессе роста и раз­вития организма, в регуляции обменных процессов, обеспечиваю­щих его жизнедеятельность, в мобилизации сил организма, а также в восстановлении энергетических ресуров и обновлении его клеток и тка­ней. Таким образом, помимо нервной регуляции жизнедеятельности организ­ма (в том числе при занятиях спортом) существует эндокринная регуляция и гуморальная регуляция, тесно взаимо­связанные и осуществляемые по меха­низму «обратной связи».

Поскольку занятия физической культурой и особенно спортом требу­ют все более совершенных регулирова­ния и корреляции деятельности раз­личных систем и органов человека в сложных условиях эмоционального и физического напряжения, исследование функции эндокринной системы хотя и не вошло еще в широкую практику, но постепенно начинает занимать все большее место в комплексном исследо­вании спортсмена.

Правильная оценка функционально­го состояния эндокринной системы поз­воляет выявить патологические измене­ния в ней в случае нерационального применения физических упражнений. Под влиянием рациональных система­тических занятий физической культурой и спортом эта система со­вершенствуется.

Адаптация эндокринной системы к физической нагрузке харак­теризуется не просто усилением активности желез внутренней сек­реции, а главным образом изменением взаимоотношений между отдельными железами. Развитие утомления при длительной работе также сопровождается соответствующими изменениями в активно­сти желез внутренней секреции.

Эндокринная система человека, совершенствуясь под влиянием рациональной тренировки, способствует повышению адаптационных возможностей организма, что обусловливает улучшение спортив­ной работоспособности, в частности при развитии выносли­вости.

Исследование эндокринной системы сложно и обычно прово­дится в условиях стационара. Но существует ряд простых методов исследования, позволяющих в известной мере оценить функцио­нальное состояние отдельных желез внутренней секреции, - анам­нез, осмотр, пальпация, функциональные пробы.

Анамнез. Важными являются данные о периоде полового со­зревания. При расспросе женщин выясняют время начала, регу­лярность, длительность, обильность менструации, развитие вторич­ных половых признаков; при расспросе мужчин - время появления ломки голоса, растительности на лице и т. д. У лиц старшего воз­раста - время появления климактерического периода, т. е. время прекращения менструаций у женщин, состояние половой функции у мужчин.

Существенными являются сведения об эмоциональном состоя­нии. Например, быстрая смена настроения, повышенная возбуди­мость, беспокойство, сопровождаемые обычно потливостью, тахи­кардией, потерей веса, субфебрильной температурой, быстрой утом­ляемостью, могут свидетельствовать о повышении функции щито­видной железы. При понижении функции щитовидной железы от­мечается апатия, которой сопутствуют вялость, медлительность, брадикардия и т. д.

Симптомы повышения функции щитовидной железы иногда поч­ти совпадают с симптомами, появляющимися при перетренированности спортсмена. Этой стороне анамнеза следует придавать осо­бое значение, поскольку у спортсменов наблюдаются случаи повы­шения функции щитовидной железы (гипертиреоз).

Выясняют наличие жалоб, характерных для больных сахарным диабетом, - на повышенные жажду и аппетит и др.

Осмотр. Обращают внимание на следующие признаки: про­порциональность развития отдельных частей тела у лиц высокого роста (нет ли непропорционального увеличения носа, подбородка, кистей рук и стоп, которое может свидетельствовать о гиперфунк­ции передней доли гипофиза - акромегалии), на наличие пучегла­зия, выраженного блеска глаз (наблюдается при гипертиреозе), одутловатости лица (отмечается при гипотиреозе), а также на та­кие признаки, как увеличение щитовидной железы, потливость или сухость кожи, наличие жира (преимущественное отложение жира в нижней части живота, ягодицах, бедрах и на груди характерно для ожирения, связанного с нарушением функции гипофиза и половых желез), резкое похудание (бывает при тиреотоксикозе, заболева­ниях гипофиза - болезнь Симмондса и надпочечников - болезнь Адиссона).

Кроме того, при осмотре определяют волосяной покров на теле, поскольку рост волос зависит в большой мере от гормональных влияний половых желез, щитовидной железы, надпочечника и гипо­физа. Наличие у мужчин волосяного покрова, характерного для женщин, может свидетельствовать о недостаточности функции по­ловых желез. Мужской тип волосяного покрова у женщин может быть проявлением гермафродитизма - наличия у одного индиви­дуума признаков, характерных для обоих полов (такие лица к за­нятиям спортом не допускаются).

Чрезмерный рост волос на теле и конечностях, а у женщин и на лице (усы и борода) позволяют заподозрить опухоль коры надпо­чечника, гипертиреоз и др.

Пальпация. Из всех эндокринных желез непосредственной пальпации (как и осмотру) могут быть подвергнуты щитовидная железа и мужские половые железы; при гинекологическом исследо­вании - женские половые железы (яичники).

Функциональные пробы. При исследовании функции эн­докринных желез применяется много таких проб. Наибольшее зна­чение в спортивной медицине имеют функциональные пробы, ис­пользуемые при исследовании щитовидной железы и надпочеч­ников.

Функциональные пробы при исследовании функции щитовидной железы основаны на исследовании обменных процессов, регулируемых этой железой. Гормон щитовид­ной железы - тироксин стимулирует окислительные процессы, уча­ствуя в регуляции различных видов обмена (углеводного, жирово­го, обмена йода и др.). Поэтому основным методом изучения функ­ционального состояния щитовидной железы является определение основного обмена (количество энергии в килокалориях, расходуе­мое человеком в состоянии полного покоя), находящегося в пря­мой зависимости от функции щитовидной железы и количества вы­деляемого ею тироксина.

Величина основного обмена в килокалориях сопоставляется с должными величинами, рассчитанными по таблицам Гарриса - Бе­недикта или по номограммам, и выражается в процентах к долж­ной величине. Если основной обмен у обследуемого спортсмена пре­вышает должный более чем на +10%, это позволяет предположить гиперфункцию щитовидной железы, если меньше на 10% - ее гипо­функцию. Чем выше процент превышения, тем выраженнее гипер­функция щитовидной железы. При значительном гипертиреозе ве­личина основного обмена может быть больше +100%. Снижение основного обмена более чем на 10% по сравнению с должным может указывать на гипофункцию щитовидной железы.

Функцию щитовидной железы можно исследовать также с помо­щью радиоактивного йода. При этом определяется способность щи­товидной железы к его поглощению. Если в щитовидной железе через 24 часа сохраняется больше 25% введенного йода, это свиде­тельствует о повышении ее функции.

Функциональные пробы при исследовании функции надпочечников позволяют получить ценные дан­ные. Надпочечники оказывают разностороннее влияние на орга­низм. Мозговое вещество надпочечников, выделяя гормоны - катехоламины (адреналин и норадреналин), осуществляет связь между железами внутренней секреции и нервной системой, участвует в регуляции углеводного обмена, поддерживает тонус сосудов и мышцы сердца. Корковое вещество надпочечников выделяет альдостерон, кортикостероиды, андрогенные гормоны, играющие важней­шую роль в жизнедеятельности организма в целом. Все эти гормо­ны участвуют в минеральном, углеводном, белковом обмене и в ре­гуляции целого ряда процессов в организме.

Напряженная мышечная работа усиливает функцию мозгового слоя надпочечников. По степени этого усиления можно судить о влиянии нагрузки на организм спортсмена.

Для определения функционального состояния надпочечников исследуется химический и морфологический состав крови (количество калия и натрия в сыворотке крови, количество эозинофилов в крови) и мочи (определение 17-кетостероидов и др.).

У тренированных спортсменов после нагрузки, соответствующей уровню их подготовленности, отмечается умеренное повышение функции надпочечника. Если же нагрузка превышает функциональ­ные возможности спортсмена, происходит угнетение гормональной функции надпочечников. Это определяется специальным биохимиче­ским исследованием крови и мочи. При недостаточности функции надпочечников изменяется минеральный и водный обмен: в сыво­ротке крови снижается уровень натрия и возрастает количество калия.

Без совершенной, согласованной функции всех желез внутренней секреции нельзя достичь высокой спортивной работоспособности. По-видимому, различные виды спорта связаны с преимуществен­ным повышением функции разных желез внутренней секреции, ибо гормоны каждой из желез оказывают специфическое действие.

При развитии качества выносливости основную роль играют гор­моны, регулирующие все основные виды обмена, при развитии ка­честв скорости и силы важное значение имеет повышение уровня адреналина в крови.

Актуальной задачей современной спортивной медицины явля­ется изучение функционального состояния эндокринной системы спортсмена для выяснения ее роли в повышении его работоспособ­ности и предупреждении развития патологических изменений как в самой эндокринной системе, так и в других системах и органах (поскольку нарушение функции эндокринной системы оказывает влияние на организм в целом).

Глава 15 ЗАКЛЮЧЕНИЕ ПО РЕЗУЛЬТАТАМ МЕДИЦИНСКОГО ОБСЛЕДОВАНИЯ

Врачебное обследование физкультурника и спорт­смена, как первичное, так и повторное и дополнительное, должно завершаться врачебным заключением.

На основании полученных при обследовании данных анамнеза, физического развития, состояния здоровья и функционального со­стояния, а также данных инструментального, лабораторного иссле­дований и заключения специалистов по отдельным органам и систе­мам (окулиста, невропатолога и др.) спортивный врач-терапевт должен сделать определенные выводы и дать соответствующее за­ключение.

Первичное врачебное обследование обязательно включает в себя все перечисленные выше элементы. При повторном и дополнитель­ном обследованиях инструментальные, лабораторные исследования и консультации специалистов проводятся только при необходимости и лишь те, которые найдет нужным назначить наблюдавший врач-диспансеризатор. Этим обусловливается различный характер вра­чебного заключения при первичном, повторном и дополнительном обследованиях физкультурника или спортсмена. Однако независи­мо от того, какое врачебное обследование проведено, медицинское заключение должно содержать следующие пять разделов: 1) оцен­ку состояния здоровья, 2) оценку физического развития, 3) оценку функционального состояния, 4) рекомендации спортсмену по режи­му дня, питанию и т. д. и 5) рекомендации тренеру и преподавате­лю по индивидуализации тренировочного процесса, режиму тре­нировки.

Оценка состояния здоровья. От этой оценки при первичном врачебном обследовании, по существу, зависит допуск данного лица к занятиям спортом или только к занятиям оздоро­вительной физкультурой. Для того чтобы поставить диагноз «здо­ров», врач обязан исключить все возможные патологические изме­нения в организме, являющиеся противопоказанием к занятиям спортом. Чтобы уверенно поставить такой диагноз, он использует весь арсенал современных диагностических средств.

Если диагноз «здоров» не вызывает сомнений и подтверждается всеми дальнейшими исследованиями, обследуемое лицо получает допуск к занятиям спортом и рекомендации по поводу того, какими видами спорта ему лучше заниматься. Эти рекомендации даются на основании всех полученных при исследовании данных, выявляю­щих особенности телосложения, конституции, функционального со­стояния и др., с учетом специфики тренировочного процесса в том или ином виде спорта, требующей определенных индивидуальных особенностей, которые должен хорошо знать спортивный врач.

Если обследуемое лицо не допускается к занятиям спортом, для чего должны быть абсолютные противопоказания, врач обязан дать рекомендации относительно занятий физической культурой, указав их характер и допустимые дозы физической нагрузки.

Абсолютными противопоказаниями к занятиям спортом являются различные хронические заболевания (порок серд­ца, хронические заболевания легких, печени, желудка, кишечника, почек и др.), физические дефекты (например, удаленные легкое или почка), которые не могут быть излечены. Врач руководствуется при этом инструкциями, определяющими противопоказания к занятиям теми или иными видами спорта, а также официальной инструкцией, утвержденной Министерством здравоохранения СССР, определяю­щей требования, которым должно отвечать здоровье спортсмена, поступающего в физкультурное высшее учебное заведение.

Помимо абсолютных противопоказаний к занятиям спортом су­ществуют так называемые относительные противопока­зания - дефекты в состоянии здоровья или в физическом разви­тии, которые препятствуют занятиям лишь каким-либо одним видом спорта. Например, перфорация барабанной перепонки вследствие перенесенного ранее воспаления среднего уха является противопо­казанием к занятиям водными видами спорта, но не препятствует занятиям всеми другими видами; плоскостопие служит относитель­ным противопоказанием только к занятиям тяжелой атлетикой. При некоторых нарушениях осанки (например, сутулость, круглая спина) не рекомендуются занятия такими видами спорта, при ко­торых эти дефекты могут усугубиться (например, велосипедный спорт, гребля, бокс), а предлагаются виды спорта, характер трени­ровочного процесса в которых способствует исправлению этих де­фектов.

Для спортсменов кроме этих противопоказаний существуют временные противопоказания к занятиям спортом - в период болезни (до полного выздоровления). К числу таких бо­лезней относятся очаги хронической инфекции, которые могут не вызывать никаких жалоб и определенное время не беспокоить спортсмена.

Очагами хронической инфекции называют хрони­ческие заболевания отдельных органов (кариес зубов, хроническое воспаление глоточных миндалин, желчного пузыря, придаточных полостей носа, яичников и др.), которые активно себя не проявля­ют (нет выраженных жалоб и клинических симптомов), пока орга­низм в состоянии подавлять постоянную интоксикацию, исходящую из них. Однако при малейшем снижении защитных сил организма эти очаги могут вызывать осложнения со стороны других органов. При своевременном лечении и удалении очагов хронической инфек­ции вызванные ими патологические изменения в других органах и системах исчезают, если в них еще не успели развиться необрати­мые изменения.

Преподаватель и тренер должны следить за тем, чтобы спорт­смен выполнял все указания врача и настойчиво лечился.

При повторных и дополнительных врачебных обследованиях дается заключение о происшедших под влия­нием занятий физической культурой и спортом изменениях в со­стоянии здоровья - как положительных, так и возможных отрица­тельных (в случае нерационального использования физической на­грузки).

Оценка физического развития. На основании данных, получен­ных с помощью различных методов изучения и оценки физического развития, дается общее заключение о физическом развитии (сред­нее, высокое или низкое физическое развитие), указываются имею­щиеся его дефекты, в частности нарушение осанки, отставание тех или иных параметров физического развития, без учета которых нельзя правильно построить тренировочный процесс. Занятия фи­зическими упражнениями должны быть направлены не только на повышение функционального состояния занимающегося, но и на устранение выявленных дефектов физического развития, которые могут оказать неблагоприятное влияние и на состояние здоровья, если их не ликвидировать. Так, нарушение осанки (сутулость, ско­лиозы), ухудшая функциональное состояние системы внешнего ды­хания и сердечно-сосудистой системы, может способствовать воз­никновению заболеваний этих систем.

Повторные исследования физического развития позволяют оце­нить воздействие систематических занятий как на морфологические, так и на функциональные показатели физического развития, выя­вить положительные и отрицательные (в случаях, когда занятия проводились без учета тех изменений, на которые врач указывал в заключении при первичном обследовании) сдвиги со стороны фи­зического развития.

Оценка функционального состояния. Для того чтобы заниматься спортом, т. е. выполнять большие физические нагрузки, надо быть не только абсолютно здоровым и хорошо физически развитым, не­обходимо быть и хорошо функционально подготовленным. Поэтому третьим разделом медицинского заключения является оценка функ­ционального состояния обследуемого. Она дается на основании результатов исследования методами функциональной диагностики, проведенного при первичном врачебном обследовании. При повторных и дополнительных врачебных об­следованиях врач определяет изменения со стороны функцио­нального состояния спортсмена. На основании тщательных иссле­дований методами функциональной диагностики делается вывод об улучшении или ухудшении функционального состояния. Его улуч­шение обычно свидетельствует о нарастании уровня тренированно­сти. Кроме того, результаты исследований, проведенных во время тренировок, соревнований (данные врачебно-педагогических наблю­дений - см. дальше), дают тренеру представление о состоянии (улучшении или ухудшении) специальной тренированности.

При повторных обследованиях врач может констатировать со­стояние перетренированности, возникающей вследствие перегруз­ки центральной нервной системы чрезмерными и однообразными физическими нагрузками, вызывающими невроз. Он может опреде­лить переутомление спортсмена. Исследование восстановительного периода после тренировок и соревнований позволяет выявить от­сутствие восстановления функций различных систем организма после предыдущих нагрузок. Недостаточный учет этих данных мо­жет привести к перенапряжению тех систем, в которых были какие-либо отклонения и на которые падала особенно большая нагрузка. Это относится, в частности, к сердцу: у спортсмена при отсутствии каких-либо жалоб и снижения работоспособности обнаруживаются отклонения на ЭКГ, свидетельствующие о несоответствии уровня его подготовленности выполняемой нагрузке. Если не обратить на это внимания, могут произойти глубокие отрицательные изменения в мышце сердца, вызывающие нарушение его функции.

В зависимости от степени функциональной подготовленности за­нимающихся преподаватель и тренер индивидуализируют их физи­ческую нагрузку.

Необходимо иметь в виду, что уровень функционального состоя­ния определяется только комплексным обследованием спортсмена. Как уже было сказано, не следует делать никаких далеко идущих выводов на основании исследования только одного какого-либо показателя, даже кажущегося очень информативным. Характер комплекса используемых при обследовании спортсмена или физ­культурника показателей не должен быть стандартным. Он опре­деляется каждый раз той задачей, которая стоит перед врачом.

Правильная оценка врачом состояния здоровья, физического развития и функционального состояния организма спортсмена по­могает тренеру и преподавателю правильно оценить состояние тре­нированности и, исходя из этого, рационально построить трениро­вочный процесс.

Повышение функционального состояния организма спортсмена характеризуется экономизацией деятельности всех систем в состоя­нии покоя, более экономным приспособлением к стандартным на­грузкам, а во время максимальных физических напряжений - воз­можностью предельного усиления функций организма.

При улучшении функционального состояния сердечно-сосудистой системы" отмечаются замедление частоты сердечных сокращений; некоторое снижение артериального давления в состоянии покоя, а по данным ЭКГ - умеренное замедление предсердно-желудочковой проводимости (PQ), повышение зубцов R и Т, снижение зуб­ца Р, укорочение электрической систолы (QT); увеличение ампли­туды зубцов рентгенокимограммы; по данным поликардиографиче­ского исследования - экономизация сократительной функции.

Улучшение функционального состояния сердечно-сосудистой си­стемы, выявляемое при исследовании с помощью стандартных проб, велоэргометрии и др., выражается в уменьшении реакции пульса и артериального давления при нагрузке на выносливость и силу и увеличении реакции на скоростную нагрузку, что свидетель­ствует о мобилизующей способности организма. Реакция на функ­циональные пробы обычно нормотоническая с хорошим количест­венным соотношением пульса и артериального давления и быстрым их восстановлением.

При повышении функционального состояния системы внешнего дыхания урежается частота дыхания, увеличивается сила дыхатель­ных мышц, фактическая жизненная емкость легких значительно превышает должную, возрастает максимальная легочная вентиля­ция, улучшаются показатели функциональных проб системы внеш­него дыхания, спортсмен становится более выносливым к снижению насыщения артериальной крови кислородом, замедляется скорость кровотока (по данным оксигемометрии).

При повышении функционального состояния нервной и нервно-мышечной систем улучшаются показатели координационных проб, а также проб для исследования вестибулярного аппарата, вегетатив­ной нервной системы, увеличиваются сила различных мышечных групп, амплитуда между напряжением и расслаблением мышц (по данным миотонометрии), уменьшаются двигательная реобаза и хронаксия, сближаются показатели мышц-антагонистов и др.

После перенесенных травм и заболеваний спортсмены и физ­культурники обязаны пройти дополнительное врачебное обследова­ние, на котором определяются точные сроки допуска к спортивным тренировкам и занятиям физической культурой и их интенсивность применительно к конкретному лицу. Перенесенные заболевания или травмы всегда снижают уровень функционального состояния спорт­смена и физкультурника. В этих случаях даже небольшая для того или иного спортсмена физическая нагрузка может не соответство­вать его функциональным возможностям в данный момент и выз­вать неблагоприятные изменения со стороны различных органов и систем. Без дополнительного врачебного обследования тренер и преподаватель не имеют права допускать спортсмена к занятиям. В противном случае это может привести к рецидиву заболева­ния, а иногда и к грозным осложнениям.

При ухудшении функционального состояния под влиянием не­рациональной, чрезмерной физической нагрузки все эти показатели изменяются в противоположную сторону.

Очень существенными для тренера и преподавателя являются те разделы медицинского заключения, в которых врач дает реко­мендации спортсмену по режиму, а тренеру и преподавателю - по индивидуализации трениро­вочных нагрузок и по режиму тренировки.

В конце заключения врач должен указать срок явки на повтор­ное врачебное обследование. Тренер и преподаватель обязаны обес­печить выполнение спортсменом этого указания.

Существует разделение на медицинские группы учащих­ся школ, техникумов и вузов, членов первичных коллективов физи­ческой культуры и занимающихся в группах здоровья. Это разделе­ние предусмотрено государственной программой физического вос­питания. Для лиц старших возрастов программа несколько иная, но принципиально не отличающаяся от общепринятой.

Тренеры и преподаватели, занимающиеся с учащимися или со студентам по государственным программам физического воспи­тания, должны знать, к какой медицинской группе относятся их ученики.

На основании состояния здоровья, физического развития и функ­циональной подготовленности занимающиеся по программе физиче­ского воспитания, а также члены первичных коллективов физиче­ской культуры распределяются на три медицинские группы - ос­новную, подготовительную и специальную.

К основной медицинской группе относятся лица с хорошим функциональным состоянием, у которых нет отклонений в состоянии здоровья и физическом развитии. Помимо занятий в пол­ном объеме по программе физвоспитания им разрешается подготов­ка к сдаче и выполнению норм ГТО. Кроме того, врач дает им ре­комендации относительно занятий в какой-либо спортивной секции и разрешение на участие в соревновании по этому виду спорта при условии достаточной подготовленности.

В подготовительную группу включаются занимаю­щиеся, имеющие небольшие отклонения в состоянии здоровья, недо­статочно полноценное функциональное состояние, слабое физиче­ское развитие. Они осваивают ту же программу физического воспитания, но более постепенно. Нормативы, по которым учитывается их успеваемость, разрабатываются с учетом имеющихся у каждого из них отклонений. Им запрещено заниматься дополни­тельно в спортивных секциях. Отнесенные к этой группе могут за­ниматься общей физической подготовкой и постепенно готовиться к выполнению норм комплекса ГТО. При улучшении состояния здо­ровья, физического развития и функционального состояния эти занимающиеся могут быть переведены из подготовительной группы в основную.

К специальной медицинской группе относятся лица со значительными отклонениями (постоянного или временного характера) в состоянии здоровья и физическом развитии. Занятия с ними строятся по особым программам с учетом имеющихся от­клонений и проводятся под постоянным врачебным наблюдением. При необходимости они направляются на занятия лечебной физи­ческой культурой в лечебно-профилактические учреждения.

Врачебное заключение на спортсмена или физкультур­ника тренер и преподаватель получают в письменном виде. При возможности, а в сборных командах обязательно, врачебные за­ключения обсуждаются совместно с педагогом.

На основании врачебного заключения тренер и преподаватель вносят необходимые коррективы в систему занятий. Указанные в нем рекомендации являются обязательными и требуют от них систе­матического контроля. Это не снимает с врача обязанности перио­дически проверять выполнение своих рекомендаций. Основные по­ложения врачебного заключения, имеющие непосредственное отно­шение к тренировочному процессу, вносятся в индивидуальный план тренировки спортсмена. При повторных врачебных осмотрах проверяется правильность построения тренировочного процесса и занятий физическими упражнениями.

Заключение врача помогает дать глубокую оценку работе тре­нера и преподавателя. Ведь ее эффективность определяется не толь­ко такими важными критериями, как повышение спортивного мас­терства, количество подготовленных спортсменов высокой квалифи­кации, но и сочетанием достижений высокого спортивного мастерст­ва с повышением и укреплением состояния здоровья спортсмена, отсутствием отрицательных изменений. Только при этом условии можно говорить об эффективности и целесообразности используемой тренером и преподавателем методики тренировки.

Необходимость тщательного выполнения врачебного заключения в настоящее время еще более усилилась в связи с использованием: в спортивной тренировке очень интенсивных физических нагрузок. Применение таких нагрузок необходимо для достижения высоких результатов, свойственных современному спорту. Это требует тща­тельного выполнения всех врачебных рекомендаций. Отступление от условий, определенных врачом, при использовании интенсивных нагрузок делает их чрезмерными, что может принести вред здо­ровью спортсмена.

При высоких нагрузках необходимо тщательно следить за их воздействием на организм, чтобы своевременно предотвратить возможное отрицательное их влияние. Если повышение спортивного мастерства, спортивных результатов сопровождается ухудшением состояния здоровья, - применяемая методика тренировки не явля­ется рациональной.

Использование такого рода нагрузок требует абсолютного здо­ровья, четкой их индивидуализации, регулярности и постепенности повышения, достаточного отдыха между занятиями, строгого выпол­нения режима и др. (не следует, например, сочетать большую фи­зическую нагрузку с интенсивной умственной), тщательного систе­матического врачебного наблюдения.

Строгое соблюдение этих требований предотвращает возможную перегрузку и обеспечивает высокую эффективность таких нагрузок.

Функциональная активность эндокринных желез, выражающаяся в интенсивности процессов биосинтеза и секреции гормонов, может варьироваться в широких пределах при различных состояниях данного организма. Она находится в зависимости от возраста, пола, времени дня, сезона, внешних и внутренних воздействий на организм, передающихся к железам через специальные системы регуляции.

Активность каждой железы может значительно отличаться у разных видов животных. Оценка функционального состояния эндокринных желез — одна из важнейших задач теоретической и практической эндокринологии, в частности клинической.

Существует ряд прямых и непрямых подходов к оценке секреторной активности эндокринных органов. Наибольший интерес среди них представляют исследования работы желез in vivo в хроническом опыте, в условиях, максимально приближающихся к физиологическим. Показано, что количественное изучение процессов биосинтеза и секреции в опытах in vitro приводит обычно к искусственному занижению их уровней (падение до 10%) по сравнению с данными, полученными in vivo в условиях нормального кровоснабжения и иннервации железы, нормального гормонального баланса и т.д. (Дорфман, Унгар, 1965).

В связи с этим количественная оценка физиологических уровней продукции гормонов в прямых экспериментах in vitro малопригодна. Также ограниченное физиологическое значение имеют методы прямого измерения секреции гормонов в кровь, оттекающую от эндокринных желез в условиях острого опыта. Действительно, такие исследования проводятся в условиях обездвиживания и наркотизации животного, сильных хирургических вмешательств (вскрытие полостей тела, канюлирование сосудов и т.д.). Все это резко искажает нормальное течение процессов биосинтеза и секреции гормонов.

Бесспорно, заслуживают внимания методы хронического вживления ангиостомических трубок (канюль) в участки кровеносного русла, которые отводят кровь от исследуемых желез (Нелсон, Хьюм, 1955; В.М. Родионов и др.; 1960). Однако такого рода экспериментальные подходы практически осуществимы далеко не для всех желез, не у всех видов животных и не могут быть использованы применительно к здоровому человеку.

Один из наиболее распространенных способов количественной оценки секреторной активности эндокринных желез у человека и животных in vivo — определение концентрации гормонов в периферической крови. Этот способ оценки непрямой, так как отражает не только работу желез, но и степень связывания гормонов с белками крови, интенсивность гормонального метаболизма и экскреции. Если функции печени и почек существенно не изменены и уровень плазменных белков, связывающих определяемые гормоны, постоянен, концентрация гормонов в периферической крови может прямо коррелировать с секреторной активностью соответствующих желез.

Наряду с определением концентрации гормонов в крови в состоянии покоя может иметь существенное значение измерение функциональных резервов железы, проводимое с применением функциональных проб. Так, для изучения функциональных резервов коры надпочечников проводят пробу с введением АКТГ, инсулярного аппарата — с введением глюкозы и т.п. Среди методов определения содержания гормонов в крови (биологических, фотометрических, флюорометрических, радиоизотопных) наибольшее внимание исследователей привлекают методы сатурационного, или конкурентного, белковосвязывающего анализа.

В основе этих методов лежит вытеснение определяемым эндогенным гормоном меченного тритием (3Н) или радиоактивным йодом (1251) того же гормона из комплекса со специфически связывающим его белком (иммунным, транспортным или рецепторным). Тестирующей системой анализа являются белок и специфически связываемый им меченый гормон. Чем больше эндогенного гормона содержится в исследуемой пробе плазмы, тем большее количество метки он вытесняет из комплекса с белком.

Методы сатурационного анализа и особенно радиоиммунологические методы (Берсон, Ялоу, 1960, 1961), в которых применяются в качестве связывающих белков антитела к гормону, обладают высокими специфичностью и чувствительностью. Этим они значительно превосходят все другие методы исследования концентрации гормонов, позволяя высокоспецифически определять малые их количества (10-12—10-9 г) и за счет этого использовать для анализа всего 10-3—10-1 мл плазмы крови. Последнее обстоятельство очень важно, поскольку гормоны содержатся в крови в очень низких концентрациях.

Получил распространение иммуноферментный метод, в котором в качестве маркера используется гормон, ковалентно связанный с ферментом (щелочной фосфатазой, пероксидазой), дающим легко воспроизводимую высокочувствительную цветную реакцию с соответствующим субстратом. Иммуноферментные методы, мало уступая радиоиммунологическим по чувствительности, устраняют некоторую радиационную опасность и необходимость использования сложной дорогостоящей аппаратуры для счета радиоактивности (Шуурс. 1972; Отзуки и др., 1979).

В табл. 3-9 обобщены данные, полученные с помощью радиологических, иммуноферментных, флюорометрических методов, по массовым концентрациям ряда гормонов в крови человека и некоторых видов животных при различных физиологических или патологических состояниях организма.

Таблица 3. Концентрация кортизола (F) и кортикостерона (В) в плазме крови человека и некоторых видов животных (мкг %)


Таблица 4. Концентрация прогестерона в плазме крови человека и некоторых видов животных (мкг%)



Таблица 5. Концентрация эстрадиола (Е2) и эстрона (E1) в плазме крови здорового человека (нг%)



Таблица 6. Концентрация 1,25-диоксихолекальциферола в плазме крови человека и животных разных видов



Таблица 7. Концентрация катехоламинов в крови человека при разных состояниях организма (нг%)



Таблица 8. Концентрация трийодтиронина (Т3) тетрайодтиронина (Т4) в крови здорового человека и животных разных видов



С помощью радиоиммунологического метода установлено, что концентрация альдостерона в плазме крови здорового человека при обычной диете составляет 7-14 нг%, при солевой нагрузке — 1-2,5, при бессолевой диете — 15-35 нг%. Этим же методом показано, что в плазме крови здорового половозрелого мужчины концентрация Т составляет 550-800 нг%, DT — 20-40, Д4 — 90-175, ДЭА — 350-850 нг%, в плазме крови здоровой половозрелой женщины — соответственно 40-70, 10-20, 130-200, 450-600 нг%.

Таблица 9. Концентрация некоторых белково-пептидных гормонов в плазме крови здорового человека при различных состояниях организма (нг%)






Другой достаточно адекватный, хотя также непрямой способ количественной оценки секреторной активности эндокринных желез, — измерение суточной экскреции с мочой гормонов или их специфических метаболитов. В случае нормальной работы печени и почек величины экскреции гормональных соединений могут пропорционально отражать интенсивность секреторных процессов в соответствующих железах.

Для определения гормонов и их метаболитов в пробах мочи в эксперименте и клинике широко используют методы сатурационного анализа и др. Поскольку многие гормональные метаболиты экскретируются с мочой в больших количествах (до нескольких мг за сутки), то они в ряде случаев могут быть легко определены колориметрически и флюорометрически.

Определение гормональных соединений в моче может быть затруднено, если они экскретируются преимущественно не с мочой, а с желчью (например, у крысы или мыши).

Несмотря на то, что измерения концентрации гормонов в крови и суточной экскреции гормональных соединений с мочой в покое или при функциональных нагрузках могут довольно надежно характеризовать интенсивность продукции гормонов эндокринными железами, получаемые с их помощью характеристики не дают представления об истинных величинах скоростей этих процессов.

Истинные величины скоростей продукции гормонов in vivo в условиях хронического исследования могут быть получены без хирургического вмешательства с помощью метода разведения изотопной метки (Пирлмэн, 1957). Данный метод также непрямой. Он основан на введении в исследуемый организм следовых количеств соответствующего меченого гормона с высокой удельной радиоактивностью и последующим измерением скорости разведения метки экзогенного гормона эндогенным, продуцируемым. Скорость разведения метки определяется по кинетике снижения удельной радиоактивности гормона или его специфического метаболита, выявляемых в крови или моче. Простая математическая обработка данных по измерению кинетики разведения позволяет подсчитать скорость продукции исследуемого гормона в организме.

Технически более прост и удобен вариант метода с исследованием разведения метки в гормональных соединениях мочи.

Принцип данного варианта метода основывается на том. что степень разведения метки в крови эндогенным, секретируемым гормоном равна степени разведения меченого гормона или его специфического метаболита в суточной моче немеченным, эндогенным. На основе этого принципа, обозначив радиоактивность вводимого гормона R. радиоактивность исследуемого гормонального соединения в суточной моче г. его количество М, а количество гормона, поступающего в кровь за сутки Р.

Получаем: R/P - r/M. Очевидно, Р — сумма количества эндогенного, секретируемого за сутки гормона (Рх) и количества экзогенного, меченого (Pr), т.е. Р=Рх + Pr. Тогда, зная величины А и Pr и экспериментально определив величины г и М, рассчитываем Р=RM/r, а Рх=Р — Pr. Рдг и есть скорость продукции гормона. Поскольку удельная радиоактивность гормонального соединения мочи a = r/M, R/Р = а или Р = R/a

Так как меченый гормон вводится в таких экспериментах в следовых количествах, чтобы не изменить эндогенный гормональный баланс, и обычно Рх » Ря, расчетом Рх=Р — Pr можно практически пренебречь. Следует отметить, что равенство R/P = a действительно, если есть динамическое равновесие между скоростью продукции гормона, с одной стороны, и его метаболизмом — с другой, и если скорость выведения гормонального соединения почками относительно постоянна, а функция самих почек нормальна.

Определение величины скорости секреции гормона по разведению вводимой изотопной метки в крови с технической стороны значительно более сложно, так как требует многократного взятия крови и определения в ней удельной радиоактивности исследуемого гормона в течение одного опыта.

Для определения скорости продукции гормона в этом варианте метода пользуются уравнением Р = Q/T. где Р — скорость продукции, Q — общее количество гормона в циркулирующей крови, Т — время оборота, т.е. полного обновления меченого гормона в крови за счет секреции эндогенного гормона. Это уравнение справедливо лишь при наличии динамического равновесия между процессами непрерывной продукции гормона, его метаболизма и выведения его из крови. Поскольку Q = СУ, где С — концентрация гормона, а V — объем крови, то Р = СV/Т. Величины С и К легко определить. Наибольшую техническую трудность представляет нахождение величины Т. Ее находят графически путем экстраполяции полулогарифмических кривых разведения меченого гормона (снижения его удельной радиоактивности) во времени.

Практически наиболее точно определяется из получающихся линейных графиков не сама величина Т, a Т1/2. т.е. время полузамещения метки введенного гормона эндогенным, немеченым.

Данные по скорости продукции гормонов, получаемые с помощью вариантов метода разведения изотопной метки с использованием крови и мочи, обычно хорошо совпадают. Необходимо иметь в виду, что полученные этим методом результаты могут отражать не только скорость секреции гормонов соответствующими железами, но и скорость образования гормонов в периферических тканях, если оно имеет место, как, например, в случае тестостерона или трийодтиронина.

Скорости секреции гормонов железой и продукции их на периферии могут быть отдифференцированы друг от друга. Однако эта процедура технически сложна и редко используется в экспериментальной и клинической практике.

С помощью вариантов метода разведения изотопной метки установлено, что различные гормоны продуцируются со скоростью от нескольких микрограммов до десятков миллиграммов за сутки, причем величина скорости продукции каждого гормона может широко варьироваться в зависимости от физиологических условий. Наиболее полно изучена скорость продукции стероидных гормонов у человека (табл. 10).

Таблица 10. Скорость продукции стероидных гормонов у человека при различных патологических состояниях организма (обобщенные данные)


В.Б. Розен

Федеральное агентство по образованию РФ
ГОУ ВПО Башкирский государственный университет
Биологический факультет
Кафедра биохимии

Курсовая работа
Методы исследования эндокринной системы в норме и патологии

Выполнил:
Студент ОЗО 5 курса
Группы А
Усачёв С. А.

Уфа 2010
Содержание
Введение………………………………………………………… ………………4
1. Обзор методов исследования эндокринной системы
в норме и патологии……………………………………………………… …6
1.1. Краткий исторический очерк…………………………………………...6
1.2. Обзор современных методов исследования эндокринной системы..12
1.3. Современные методы исследования эндокринной системы на
примере исследования щитовидной железы………………………………28
2. Проблемы и перспективы методов исследования эндокринной
системы…………………………………………………………… …………45
Заключение…………………………………………………… ………………..58
Список использованной литературы…………………………………………59

Список сокращений, принятых в работе
АОК – антителобразующие клетки
АГ – антиген
АКТГ – адренокортикотропный гормон
ВЭЖХ – высокоскоростная жидкостная хроматография
ГИ – компенсаторная гиперинсулинемия
ДНК – дезоксирибонуклеиновая кислота
ЖХ – жидкостная хроматография
ИФА – иммуноферментный анализ
ИР – инсулинорезистентность
КТ – компьютерная томография
ЛГ – лютеинезирующий гормон
МС – метаболический синдром
МРТ – магнитно-резонансная томография
ПЦР – полимеразная цепная реакция
РИА – радиоиммунный анализ
РГЗТ – реакция гиперчувствительности замедленного типа
СД 2 – сахарный диабет 2-го типа
TSH – стимулирующий гормон щитовидной железы
Т4 – тироксин
Т3 – трийодтиронин
TBG – тест тироксин-связующего глобулина
УЗИ – ультразвуковое исследование
ФИА – флуоресцентный иммуноанализ
ЦДК – цветное доплеровское картирование
ЦНС – центральная нервная система
ЩЖ – щитовидная железа

Введение
За последние несколько лет в результате разработки более тонких, чувствительных и специфических методов определения гормонов и других методов изучения эндокринной системы в норме и патологии клиническая эндокринология и биохимия во многом превратилась из своего рода искусства в раздел прикладной химии, физиологии, физики и генетики. Этот прогресс оказался возможным благодаря внедрению в практику большого числа новейших и высокотехнологичных методов исследования эндокринной системы, выделению и последующей биологической и биохимической характеристике различных высокоочищенных полипептидных гормонов, стероидов, витаминов, производных небольших полипептидов и аминокислот, которые относят к гормонам, а также получению меченных радиоактивными атомами гормонов с высокой удельной активностью.
Актуальность темы:
В настоящее время, на пороге познания самых скрытых и загадочных явлений живого организма, стоит важнейшая задача - найти наиболее достоверные, доступные и высокотехнологические методы исследования. Новая эра нанотехнологий и узкоспециализированных открытий начинает вносить свою лепту и в биологическую химию, которая уже давно использует методы не только химического анализа, но самые современные технологии всех разделов физики, информатики, математики и других наук. Время диктует свои условия человечеству – познать глубже, познать досконально, найти причину процессов, происходящих в живом организме в норме и патологии. Поиск новых методов исследования не останавливается, и научный работник просто не успевает обобщить, систематизировать эту область познания, выделить то, что ему необходимо в данный момент. К тому же при изучении мною проблемы исследований эндокринной системы, я не нашёл достаточно полного, обобщающего пособия на эту тему. многие исследователи, в частности биохимики, сталкиваются с такой проблемой, как поиск и систематизация современных методов исследования эндокринной системы в норме и патологии. Это связано, прежде всего с тем, что ежедневно появляются новые источники литературы, новые методы исследования, но нет ни одного руководства по методам исследования, которое бы систематизировало данные о методах. Именно по этим причинам актуальность выбранной мною темы очень высока.
Цель работы:
Систематизировать данные о состоянии методов исследования эндокринной системы в норме и патологии в современном мире.
Задачи:

    Сделать исторический обзор по теме.
    Отразить современное знание о методах исследования эндокринной системы, без подробного описания методики и техники исследований.
    Описать методы исследования на примере одной эндокринной железы.
    Выделить проблемы и перспективы современных методов исследования эндокринной системы в норме и патологии.
Курсовая работа выполнена на основании изучения и анализа литературных источников, состоит из введения, двух глав, заключения, и списка использованной литературы. Общий объём курсовой работы 61 лист машинописного текста в формате Microsoft Word 2007, шрифт Times New Roman, 14 кегль, интервал между строк 1,5. Курсовая работа содержит 13 рисунков, 2 таблицы, 32 использованных библиографических наименований со ссылками в тексте работы. К работе прилагается аннотация на русском и английском языках.

1. Обзор методов исследования эндокринной системы в норме и патологии
1.1. Краткий исторический очерк
Изучение эндокринной системы и сама эндокринология являются относительно новыми явлениями в истории науки. Эндокринная система была недосягаемой частью организма человека вплоть до начала 20 века. До этого исследователи не могли разгадать тайны эндокринных образований ввиду того, что не могли выделить и изучить выделяемые ими жидкости («соки» или «секреты»). Учёные не обнаруживали ни «соков», ни специальных выводных протоков, по которым произведённая жидкость обычно вытекает наружу. Поэтому единственным методом исследования функций эндокринной железы был метод иссечения части или целого органа.
Учёные – историки утверждали, что об органах эндокринной системы на Востоке знали ещё в глубокой древности и почтительно величали их «железами судьбы». По мнению восточных врачевателей, эти железы являлись приёмниками и трансформаторами космической энергии, вливающейся в невидимые каналы (чакры) и поддерживающей жизненные силы человека. Считалось, что слаженную работу «желёз судьбы» могут расстроить катастрофы, происходящие по воле злого рока.
Упоминание о заболевании, скорее всего сахарном диабете, содержится в египетских папирусах 1500 г. до н. э.. Зоб и эффекты кастрации животных и человека принадлежат к первым клиническим описаниям болезней, эндокринная природа которых была доказана впоследствии. Старые клинические описания эндокринных заболеваний были сделаны не только на Западе, но и древнем Китае и Индии.
Если расположить значительные открытия во многих областях эндокринологии по времени, то полученная картина отразит в миниатюре историю всей биологии и медицины. После отрывочных клинических наблюдений, сделанных в древности и средневековье, эти науки прогрессировали крайне медленно. Во второй половине 19 века произошёл быстрый скачок в развитии многих областей медицины, как в отношении качества клинических исследований, так и в понимании механизмов заболеваний. Этот процесс был обусловлен сложностью взаимосвязью исторических причин.
Во-первых, промышленная революция привела к накоплению капиталов, которые использовались для развития многих наук, главным образом химии и биологии.
Другая революция, свершившаяся во второй половине 19 века и имевшая фундаментальное значение для развития не только эндокринологии, но и медицины и биологии, состояла в появлении экспериментального моделирования на животных. Клод Бернар и Оскар Минковский продемонстрировали возможность проведения контролируемых и воспроизводимых опытов в лабораторных условиях. Иными словами, была создана возможность «перекрёстного допроса» природы. Без деятельности этих первооткрывателей мы бы были лишены большей части современных знаний в области эндокринологии. Изучение всех тех веществ, которые называются гормонами, начиналось с опытов на целых животных (а часто и предшествовавших им наблюдений над больными людьми). Эти вещества именовались веществом «Х» или фактором «?». Постулаты « Коха» для эндокринологии предусматривали следующий порядок работы:
1. Удаление предполагаемой железы. После удаления какой-либо эндокринной железы возникает комплекс расстройств, обусловленных выпадением регуляторных эффектов тех гормонов, которые вырабатываются в этой железе. Вследствие травматичности оперативного вмешательства вместо хирургического удаления эндокринной железы может быть использовано введение химических веществ, нарушающих их гормональную функцию. Например, введение животным аллоксана нарушает функцию?-клеток поджелудочной железы, что приводит к развитию сахарного диабета, проявления которого практически идентичны расстройствам, наблюдаемым после экстирпации поджелудочной железы. 1
2. Описание биологических эффектов операции. Например, предположение о наличии эндокринных функций у поджелудочной железы нашло подтверждение в опытах И. Меринга и О. Минковского (1889), показавших, что ее удаление у собак приводит к выраженной гипергликемии и глюкозурии; животные погибали в течение 2-3 нед. после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти изменения возникают из-за недостатка инсулина - гормона, образующегося в островковом аппарате поджелудочной железы.
3. Введение экстракта железы.
4. Доказательство того, что введение экстракта ликвидирует симптомы отсутствия железы.
5. Выделение, очистка и идентификация активного начала.
В период второй мировой войны в области эндокринологии было накоплено большое количество данных, многие из которых имели фундаментальное значение для последующего развития науки. После же войны в связи с появлением множества новых методик произошло вообще беспрецедентное ускорение темпа исследований. И в настоящее время в результате резкого притока технических и творческих сил количество публикаций, как по эндокринологии, так и по всем другим аспектам медико-биологических знаний растёт с впечатляющей быстротой. Это означает постоянное поступление новых данных, что требует периодического пересмотра старых представлений в их свете. 2
XX век ознаменовался рождением науки о гормонах, или эндокринологии. Само слово «гормон» было введено в 1905 г. британским физиологом, профессором Эрнстом Старлингом на лекции в Королевском колледже медиков в Лондоне. Оно было образовано двумя профессорами Кембриджского университета от греческого слова hormao, что значит «быстро приводить в действие», «поднимать» или «возбуждать». Старлинг использовал его для описания «химических носителей», выбрасываемых в кровь железами внутренней секреции, или эндокринными железами (endon - внутренний + krino - вырабатывать), например, семенниками, надпочечниками и щитовидной железой, а также из внешних, экзокринных (exo - внешний) желез, таких как слюнные и слезные железы. Эта новая наука очень быстро развивалась, возбуждая умы не только медиков, но и общества.
Как правило, история изучения любого гормона проходит четыре стадии.
Сначала наблюдается эффект, который производит на организм секрет, выделяемый железой.
Во-вторых, разрабатываются методы определения внутреннего секрета и степени его влияния на организм. Сначала это делается посредством биологических анализов с целью определения влияния гормона на организм, в котором его не хватает. Позже устанавливаются химические методы такого измерения.
В-третьих, гормон выделяют из железы и изолируют.
И наконец, в-четвертых, его структуру определяют химики, и его синтезируют. 3
В настоящее время у исследователей, начинающих с наблюдений на уровне целостного организма, по мере продвижения работы возникает всё больше и больше вопросов до тех пор, пока они не пытаются решить исходную проблему на молекулярном уровне. Здесь в свои руки эндокринологическое исследование берёт биологическая химия и её раздел – молекулярная биология (эндокринология).
Как только появляются новые морфологические, химические, электрофизиологические, иммунологические и другие методики, они находят очень быстрое применение в эндокринологии. Например, в 30 – 40х годах для изучения стероидов применялись весьма сложные методы. Это обусловило большие успехи в понимании структуры и биосинтеза стероидных гормонов. Возможность использования радиоактивных изотопов, появившаяся в конце 40 - 50х годов, расширила наши знания о многих аспектах йодного цикла, промежуточного обмена, транспорта ионов и т. д. Для исследования функциональной активности эндокринной железы, может быть использована ее способность захватывать из крови и накапливать определенное соединение. Известно, например, что щитовидная железа активно поглощает йод, который затем используется для синтеза тироксина и трийодтиронина. При гиперфункции щитовидной железы накопление йода усиливается, при гипофункции наблюдается обратный эффект. Интенсивность накопления йода может быть определена путем введения в организм радиоактивного изотопа 131I с последующей оценкой радиоактивности щитовидной железы. В качестве радиоактивной метки могут быть введены также соединения, которые используются для синтеза эндогенных гормонов и включаются в их структуру. В последующем можно определить радиоактивность различных органов и тканей и оценить, таким образом, распределение гормона в организме, а также найти его органы-мишени.
Позднее для изучения многих белков, в том числе гормональных рецепторов, было творчески использовано сочетание электрофореза в поликриламидном геле с радиоавтографией. Одновременно с этими впечатляющими успехами в химии ещё более плодотворным оказалось применение гистохимических, иммуногистохимических и электронно-микроскопических методов.
Все варианты хроматографии – колоночная, тонкослойная, бумажная, многомерная, газо-жидкостная (с масс-спектрометрией или без неё), высокоэффективная жидкостная – использовались эндокринологами тотчас же после их появления. Они позволили получить важные сведения не только об аминокислотной последовательности пептидов и белков, но и о липидах (особенно простагландинах и близких к ним веществах), углеводах и аминах.
По мере разработки молекулярно-биологических методов исследования эндокринологи быстро применяют их для изучения механизмов действия гормонов. В настоящее время метод рекомбинантных ДНК используется не только для этой цели, но и для производства белковых гормонов. Действительно, трудно назвать биохимический или физиологический метод, который не был бы взят на вооружение эндокринологами. 4


1.2. Обзор современных методов исследования эндокринной системы
При обследовании больных с подозрением на эндокринную патологию, кроме сбора анамнеза заболевания, осмотра и жалоб больного, используют следующие методы диагностики: общие лабораторные методы (клинические и биохимические), гормональное исследование, инструментальные методы, молекулярно-генетические методы.
В большинстве случаев гормональное исследование имеет не ключевое, а верифицирующее значение для постановки диагноза. Для постановки диагноза ряда эндокринных заболеваний гормональное исследование вообще не используется (несахарный и сахарный диабет); в ряде же случаев гормональное исследование имеет диагностическое значение только в комплексе с биохимическими показателями (уровень кальция при гипертиреозе).
При гормональном исследовании может быть выявлено снижение продукции того или иного гормона, повышение и его нормальный уровень (таб.1). Наиболее часто используемыми в клинической практике методами определения гормонов являются различные модификации радиоиммунного метода . Эти методы основаны на том, что меченный радиоактивной меткой гормон и гормон, содержащийся в исследуемом материале, конкурируют между собой за связывание со специфическими антителами: чем больше в биологическом материале содержится данного гормона, тем меньше свяжется меченых молекул гормона, так как количество гормонсвязывающих участков в образце постоянно. Более 20 лет назад Berson и Yalow предложили радиоиммунологический метод определения инсулина.
Этот метод основывался на их наблюдении, согласно которому в периферической крови больных диабетом, получавших инсулин, присутствует белок (который, как было показано позднее, является глобулином), связывающий инсулин, меченный 131I. Значение этих данных и последующей разработки радиоиммунологического метода определения инсулина подчеркивается присуждением Yalow и Berson нобелевской премии.
Вскоре после первых сообщений этих исследователей другими лабораториями были разработаны и описаны соответствующие методы для определения других гормонов. В этих методах применяются либо антитела, либо сывороточные белки, связывающие определенный гормон или лиганд и несущий радиоактивную меткугормон, конкурирующий со стандартным гормоном или гормоном, присутствующим в биологической пробе.

Принцип радиорецепторного метода по существу не отличается от радиоиммунологического, только гормон, вместо того чтобы связываться с антителами, связывается со специфическим гормональным рецептором плазматической мембраны или цитозоля. Специфические рецепторы большинства полипептидных гормонов располагаются на наружной поверхности плазматической мембраны клеток, тогда как рецепторы биологически активных стероидов, а также тироксина и трийодтиронина - в цитозоле и ядрах. Чувствительность радиорецепторного анализа ниже, чем радиоиммунологического и большинства биологических методов в системах in vitro. Для того чтобы взаимодействовать со своим рецептором, гормон должен иметь соответствующую конформацию, т. е. быть биологически активным. Возможна ситуация, в которой гормон теряет способность связываться со своим рецептором, но продолжает взаимодействовать с антителами в системе для радиоиммунологического анализа. Это расхождение отражает тот факт, что антитела и рецепторы «узнают» разные участки молекулы гормона.
Предложен ряд радиорецепторных методов гормонального анализа. Обычно получают ткань специфического для данного гормона органамишени и с помощью стандартных методик выделяют из нее рецепторы. Изолированные рецепторы плазматической мембраны в осадке при хранении в условиях температуры менее - 20 °С относительно стабильны. Однако солюбилизированные рецепторы полипептидных и стероидных гормонов, выделенные из плазматических мембран либо из цитозоля и не связанные с лигандами, оказываются нестабильными, что проявляется снижением их способности связывать специфические гормоны, даже если они хранились в замороженном виде, сравнительно недолго.
В последнее время наибольшее распространение получили нерадиоактивные методики. В качестве стандартного метода определения различных соединений в клинической химии все большее распространение получает иммуноанализ , отличающийся хорошей чувствительностью, специфичностью и широкой сферой применения. В частности, иммуноанализ применяют для определения гормонов. К числу таких методов относятся:

    1) иммуноферментный анализ (ИФА), твердофазный ИФА типа ELISA или гомогенный ИФА типа EMIT.
    2) флуоресцентный иммуноанализ (ФИА), базирующийся на измерении усиления, гашения или поляризации флуоресценции или на изучении флуоресценции с разрешением во времени.
    3) био- или хемилюминесцентный иммуноанализ.
Методика должна:
1) быть применимой как для двухсайтового иммунометрического анализа белков, так и для прямых конкурентных анализов гаптенов, основанных на принципе связывания.
2) иметь соответствующие чувствительность, точность и рабочий диапазон определяемых концентраций с минимальным разбросом результатов во всем диапазоне.
3) легко совершенствоваться с целью дальнейшего повышения чувствительности и упрощения анализа.
Потенциально в методике должна быть заложена возможность ее усовершенствования и применения к анализам других веществ, внелабораторным и безразделительным анализам и к одновременному определению нескольких веществ (так называемому множественному иммуноанализу). Идеальным методам иммуноанализа, в наибольшей степени, соответствуют люминесцентные или фотоэмиссионные методы, в которых детекция метки проводится по регистрации излучения света.
Люминесценция - это эмиссия света веществом, находящимся в электронно-возбужденном состоянии. Существуют несколько типов люминесценции, различающихся только источниками энергии, которая переводит электроны в возбужденное состояние, т.е. на более высокий энергетический уровень, а именно:
1) Радиалюминесценция, в которой возбуждение соответствующего флуорофора достигается за счет поглощения энергии, выделяющейся в процессе необратимого радиоактивного распада. Возбужденный флуорофор излучает свет, возвращаясь в основное состояние.
2) Хемилюминесценция, в которой возбуждение достигается в результате химической реакции (обычно необратимой реакции окисления). Если химическая реакция осуществляется в биологических системах под действием ферментов, то в этом случае обычно употребляют термин биолюминесценция. Если химическая реакция инициируется повышением температуры реагентов, то такой тип люминесценции называют термохемилюминесценцией, если же реакцию инициирует электрический потенциал, то соответствующее явление называют электрохемилюминесценцией.
3) Фотолюминесценция, в которой возбуждение вызывают фотоны инфракрасного, видимого или ультрафиолетового света. Фотолюминесценцию можно далее подразделить на флуоресценцию, когда возбужденная молекула быстро возвращается в исходное состояние через синглетное состояние, и фосфоресценцию, когда возбужденная молекула возвращается в исходное состояние через триплетное состояние. Эмиссия фосфоресценции затухает намного медленнее. Испускаемые кванты света имеют большую длину волны. Фотолюминесценция отличается от радио- и хемилюминесценции тем, что она обычно обратима, и поэтому в данной системе ее можно индуцировать повторно (поскольку образование возбужденного интермедиата и последующая его инактивация путем эмиссии света не приводят к химическим превращениям).
Кроме этих методов, своё значение полностью не потеряли химические методы определения ряда веществ (обычно это метаболиты гормонов и их предшественников). Для очистки белковых фракций и изучения гормонов часто используют хроматографию . Жидкостная хроматография находит широкое применение в качестве экспрессного и селективного аналитического метода при разделении и идентификации различных веществ. Жидкостная хроматография (ЖХ) в ее классическом варианте (при атмосферном давлении) и высокоскоростная, или ВЭЖХ при повышенном давлении - оптимальный метод анализа химически и термически нестойких молекул, высокомолекулярных веществ с пониженной летучестью, что объясняется особой ролью подвижной фазы: в отличие от газообразной элюент в ЖХ выполняет не только транспортную функцию. Природа и строение компонентов подвижной фазы контролируют хроматографическое поведение разделяемых веществ. Среди наиболее типичных объектов жидкостной хроматографии белки, нуклеиновые кислоты, аминокислоты, красители, полисахариды, взрывчатые вещества, лекарственные препараты, метаболиты растений и животных. Жидкостная хроматография, в свою очередь, разделяется на жидкостно-адсорбционную (разделение соединений происходит за счет их различной способности адсорбироваться и десорбироваться с поверхности адсорбента), жидкостно-жидкостную, или распределительную (разделение осуществляется за счет различной растворимости в подвижной фазе - элюенте и неподвижной фазе, физически сорбированной или химически привитой к поверхности твердого адсорбента), ионообменную хроматографию, где разделение достигается за счет обратимого взаимодействия анализируемых ионизирующихся веществ с ионными группами сорбента - ионита. Особое место в использовании методов жидкостной хроматографии в медицине занимают эксклюзионная, или гель-хроматография и аффинная, или биоспецифическая. В основе этого варианта ЖХ лежит принцип разделения смеси веществ по их молекулярным массам. В эксклюзионной (от англ. exclusion - исключение; устаревшее название - ситовая) хроматографии молекулы веществ разделяются по размеру за счет их различной способности проникать в поры сорбента. Подвижная фаза - жидкость, а неподвижная - та же жидкость, заполнившая поры сорбента (геля). Если молекулам анализируемого вещества недоступны эти поры, то соответствующее соединение выйдет из колонки раньше, чем то, у которого размеры молекул меньше. Молекулы или ионы, размеры которых находятся между максимальным и минимальным диаметром пор геля, разделяются на отдельные зоны. Особенно интенсивное развитие эксклюзионная хроматография получила в последние два десятилетия, чему способствовало внедрение в химическую и биохимическую практику сефадексов - декстрановых гелей, поперечно сшитых эпихлоргидрином. На различных типах сефадексов можно фракционировать химические вещества с различными молекулярными массами, поэтому их широко используют для выделения и очистки биополимеров, пептидов, олиго- и полисахаридов, нуклеиновых кислот и даже клеток (лимфоцитов, эритроцитов), в промышленном производстве различных белковых препаратов, в частности ферментов и гормонов. 5 Аффинная хроматография отличается чрезвычайно высокой избирательностью, присущей биологическим взаимодействиям. Нередко одна хроматографическая процедура позволяет очистить нужный белок в тысячи раз. Это оправдывает затраты усилий на приготовление аффинного сорбента, что не всегда оказывается легкой задачей ввиду опасности утраты биологическими молекулами способности к специфическому взаимодействию в ходе их ковалентного присоединения к матрице. 6
При изучении функционального состояния эндокринных желёз используются следующие методические подходы:
1. Определение исходного уровня того или иного гормона.
2. Определение уровня гормона в динамике с учётом циркадного ритма секреции.
3. Определение уровня гормона в условиях функциональной пробы.
4. Определение уровня метаболита гормона.

Таблица 1. Патогенез эндокринных заболеваний 7

Наиболее часто в клинической практике используется определение базального уровня того или иного гормона. Обычно кровь берётся натощак утром, хотя приём пищи не отражается на продукции многих гормонов. Для оценки деятельности многих эндокринных желёз (щитовидной, паращитовидных) оценки базального уровня гормонов вполне достаточно. При определении базального уровня гормона определённые сложности могут возникнуть в связи с циркуляцией в крови нескольких молекулярных форм одного и того же гормона. В первую очередь это касается паратгормона.
Большинство гормонов циркулирует в крови в связанном состоянии с белками-переносчиками. Как правило, уровень свободного, биологически активного гормона в крови в десятки или сотни раз ниже, чем общий уровень гормона.
Уровни большинства гормонов имеют характерную суточную динамики (циркадианный ритм секреции), при этом очень часто это динамика приобретает клиническое значение. Наиболее важна и иллюстративна в этом плане динамика продукции кортизола (рис. 1.1). 8

Другими примерами в этом плане являются пролактин и гормон роста, ритм секреции которых также определяется циклом «сон-бодрствование». В основе патогенеза ряда эндокринных заболеваний лежит нарушение суточного ритма продукции гормона.
Помимо циркадианного ритма, на уровне гормона в крови может отражаться большинство биологических параметров. Для многих гормонов референтные показатели в значительной мере зависят от возраста (рис. 1.2) 9 , пола, фазы менструального цикла.

На уровень ряда гормонов могут оказывать влияние не только сопутствующие соматические заболевания и принимаемые по поводу них лекарственные препараты, но и такие факторы как стресс (кортизол, адреналин), особенности экологии (уровень тироксина в регионах с разным потреблением йода), состав принимаемой накануне пищи (С-пептид) и многие другие.
Основополагающим принципом оценки деятельности гипофиз-зависимых (щитовидная железа, кора надпочечников, гонады) и ряда других эндокринных желёз является определение так называемых диагностических пар гормонов. В большинстве случаев продукция гормона регулируется механизмом отрицательной обратной связи. Обратная связь может иметь место между гормонами, принадлежащими к одной системе (кортизол и АКТГ), или между гормонами и его биологическим эффектором (паратгормон и кальций). Кроме того, между гормонами, составляющими пару, не обязательно должно существовать прямое взаимодействие. Иногда оно опосредовано другими гуморальными факторами, электролитами и физиологическими параметрами (объем почечного кровотока, уровень калия и ангиотензин для пары ренин-альдостерон). Изолированная оценка показателей, составляющих пару, может стать причиной ошибочного заключения.
Несмотря на улучшение методов гормонального анализа, функциональные пробы и сегодня имеют большое диагностическое значение в диагностике эндокринопатий. Функциональные пробы подразделяются на стимуляционные и супрессивные (подавляющие). Общий принцип проведения проб заключается в том, что стимуляционные пробы назначаются при подозрении на недостаточность эндокринной железы, а супрессивные – при подозрении на её гиперфункцию.
Наряду с оценкой уровня гормонов в крови определённое диагностическое значение в ряде случае случаев может иметь определение их экскреции с мочой. Диагностическая ценность этих исследований, например определение экскреции свободного кортизола, существенно меньше таковой для современных функциональных тестов. Аналогичным образом в настоящее время практически полность перестали использовать определение экскреции метаболитов гормонов, единственным исключением является определение уровня метаболитов катехоламинов для диагностики феохромоцитомы.
В последние годы широкое распространение получили полностью автоматизированные методы гормонального исследования, что позволяет снизить число таких ошибок, как неправильное взятие крови, хранение, доставка и другие «человеческие факторы».
Из инструментальных методов исследования наиболее часто используют ультразвуковое исследование (УЗИ), рентгенографию, компьютерную томографию (КТ), и магнитно-резонансную томографию (МРТ). Кроме того, в эндокринологии применяют специальные методы: ангиографию с селективным забором крови, оттекающей от эндокринной железы, радиоизотопное исследование (сцинтиграфия щитовидной железы), денситометрия костей. Основные инструментальные методы, использующиеся для изучения эндокринных желёз представлены в таблице 2.
Молекулярно-генетические методы исследования.
Бурное развитие науки за последние несколько десятилетий и исследования в области молекулярной биологии, медицинской генетики, биохимии, биофизики, тесно смыкающиеся с микробиологией, иммунологией, онкологией, эпидемиологией и т.д., привели к созданию и активному внедрению в практику диагностических лабораторий молекулярно-биологических методов исследований генома человека, животных, растений, бактерий и вирусов. Эти методы чаще всего называют ДНК-исследованиями.
Методы ДНК-исследований позволяют осуществлять раннюю и более полную диагностику различных заболеваний, своевременно проводить дифференциальную диагностику и осуществлять контроль эффективности терапии. Активное развитие методов ДНК-диагностики и внедрение их в практику позволяют предположить, что недалек тот момент, когда эти методы значительно сузят круг задач более традиционных диагностических исследований, какими являются методы цитогенетики, а может, и вытеснят их из практической медицины в научную сферу.

Таблица 2. Основные инструментальные методы
исследования эндокринных желёз 10

В настоящее время имеется два направления ДНК-диагностики: гибридизационный анализ нуклеиновых кислот и диагностика с использованием полимеразной цепной реакции.
ПЦР сразу же была внедрена в практику, что позволило поднять медицинскую диагностику на качественно новый уровень. Метод стал настолько популярен, что сегодня уже трудно представить работу в области молекулярной биологии без его использования. Особенно бурное развитие метод ПЦР получил благодаря международной программе «Геном человека». Были созданы современные технологии секвенирования (расшифровки нуклеотидных последовательностей ДНК). Если в недавнем прошлом для расшифровки ДНК размером в 250 пар нуклеотидов (п. н.) требовалась неделя, то современные автоматические секвенаторы позволяют определять до 5000 п. н. в сутки. Это, в свою очередь, способствует значительному росту баз данных, содержащих информацию о последовательностях нуклеотидов в ДНК. В настоящее время предложены всевозможные модификации ПЦР, описаны десятки различных применений метода в том числе «лонг-ПЦР», позволяющая копировать сверхдлинные последовательности ДНК. За открытие ПЦР К. В. Mullis в 1993 году был удостоен Нобелевской премии в области химии.
Все подходы к генодиагностике могут быть выделены в несколько основных групп:
1. Методы идентификации определенных участков ДНК.
2. Методы определения первичной последовательности нуклеотидов в ДНК.
3. Методы определения содержания ДНК и анализа клеточного цикла. 11
ПЦР позволяет найти в исследуемом материале небольшой участок генетической информации, заключенный в специфической последовательности нуклеотидов ДНК любого организма среди огромного количества других участков ДНК и многократно размножить его. ПЦР – это "in vitro" аналог биохимической реакции синтеза ДНК в клетке.
ПЦР - это циклический процесс, в каждом цикле которого происходит тепловая денатурация двойной цепи ДНК-мишени, последующее присоединение коротких олигонуклеотидов-праймеров и наращивание их с помощью ДНК-полимеразы путем присоединения нуклеотидов. В результате накапливается большое количество копии исходной ДНК-мишени, которые легко подаются детекции.
Результатом открытия ПЦР стало немедленное практическое использование метода. В 1985 г. была опубликована статья, в которой была описана тест-система для диагностики серповидно- клеточной анемии на основе ПЦР. Начиная с 1986 г. К настоящему времени ПЦР посвящено более 10000 научных публикаций. Перспективы использования ПЦР представляются более чем впечатляющими. 12
Цитохимические методы исследования.
Эти методы представляют собой варианты описанных биологических исследований in vitro. Они обычно обладают большей чувствительностью, чем радиоиммунологические методы, но значительно более громоздки и дороги при расчете на одно определение. Результаты цитохимических биологических исследований количественно оценивают на гистологических срезах с помощью специального устройства - микроденситометра.
Гистологические срезы готовят из специфических для данного гормона тканей или клетокмишеней, до того подвергшихся воздействию разных концентраций стандартного и испытуемого гормона. С помощью денситометра сканируют область диаметром 250 - 300 нм для количественной оценки цветной реакции, обусловленной изменением редокссостояния объекта под влиянием гормональной стимуляции. Для количественного анализа используют гистологические красители, чувствительные к этим изменениям.

Первая система цитохимического биологического исследования была разработана для АКТГ, и тканьюмишенью в этой системе служила кора надпочечников. Другие способы биологического определения АКТГ либо слишком малочувствительны, либо требуют больших объемов плазмы. Таким образом, цитохимическое определение редокс-состояния ткани является ценным средством анализа нормальной и измененной функции системы гипоталамус-гипофиз- надпочечники по уровню АКТГ.
Разработан цитохимический метод определения и ЛГ, но при этом встретились существенные трудности, связанные со значительными колебаниями результатов разных определений и непостоянной чувствительностью объекта, что, возможно, отражает известные биологические расхождения у разных животных. Чувствительные специфические цитохимические методы предложены для определения паратгормона, АДГ и тиротропина.

При дальнейшем усложнении оборудования, которое позволит увеличить число исследований в одном определении, этот метод может найти более широкое применение. Он особенно привлекателен потому, что не требует использования радиоактивных соединений. Цитохимические методы нешироко применяются в клинике и используются в основном в качестве чувствительного способа в научных исследованиях. 13

1.3. Современные методы исследования эндокринной системы на примере исследования щитовидной железы
В своей работе, ограниченной по объёму, современные методы исследования эндокринной системы в норме и патологии, я рассмотрю на примере исследования эндокринной железы, что актуально, в связи с большим распространением заболеваний щитовидной железы в республике Башкортостан.
1. Ультразвуковое исследование.
УЗИ позволяет верифицировать достаточно субъективные данные пальпации. Оптимальными для исследования служат датчики с частотой 7,5 Мгц и 10 Мгц. В настоящее время используется цветное доплеровское картирование, что позволяет визуализировать мелкие сосуды в щитовидной железе и дает информацию о направлении и средней скорости потока. Возможности метода зависят от опыта и квалификации специалиста, проводящего исследование. Принцип метода заключается в том, что ультразвук, посылаемый частыми импульсами, проникает в органы человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением, воспринимается прибором и воспроизводится на экране и ультрафиолетовой бумаге. Метод безвреден и противопоказаний не имеет (рис.1.3).

Рис.1.3. УЗИ щитовидной железы.
Сейчас также широко используют комплексное ультразвуковое исследование с использованием цветного доплеровского картирования (ЦДК), (рис.1.4) . 14

Рис. 1.4. АИТ с узлообразованием щитовидной железы в режиме ЦДК.
2. Тонкоигольная пункцинная биопсия щитовидной железы.
Тонкоигольная пункционная биопсия ЩЖ является единственным дооперационным методом прямой оценки структурных изменений и установления цитологических параметров образований в щитовидной железе. Эффективность получения адекватного цитологического материала при тонкоигольной пункционной биопсии существенно повышается, если указанная диагностическая процедура проводится под контролем УЗИ, что позволяет выявить наиболее измененные участки щитовидной железы, а также выбрать оптимальное направление и глубину пункции. 15

3. Цитологическое исследование.
Цитологическая диагностика образований в щитовидной железе базируется на совокупности определенных признаков, таких как количество полученного материала, его клеточного состава, морфологические особенности клеток и их структурных группировок, качество мазка и т.д.
4. Радиоизотопное исследование (скенирование), сцинтиграфия.
Радиоизотопное сканирование (скенирование) - способ получения двухмерного изображения, отражающего распределение радио-фармпрепарата в различных органах при помощи аппарата - сканера.


Рис.1.6. Результат радиоизотопного скенирования
щитовидной железы

Скенирование позволяет определить размеры щитовидной железы, интенсивность накопления в ней и в отдельных ее участках радиоактивного йода, что позволяет оценить функциональное состояние, как всей железы, так и очаговых образований (рис.1.6).

Сцинтиграфия - метод функциональной визуализации, заключающийся во введении в организм радиоактивных изотопов и получении изображения путём определения испускаемого ими излучения . Пациенту вводят радиоиндикатор - препарат, состоящий из молекулы-вектора и радиоактивного маркера. Молекула-вектор поглощается определённой структурой организма (орган, жидкость). Радиоактивная метка служит «передатчиком»: испускает гамма-лучи, которые регистрируются гамма-камерой. Количество вводимого радиофармацевтического препарата таково, что испускаемое им излучение легко улавливается, но при этом он не оказывает токсического воздействия на организм.
Для сцинтиграфии щитовидной железы наиболее часто используется изотоп технеция - 99m Tc-пертехнетат. Использование 131 йода - ограничивается выявлением функционирующих метастазов рака щитовидной железы. Для диагностики загрудинного и абберантного зоба, а также в ряде случаев при ворожденном гипотиреозе (атиреоз, дистопия, дефект органификации) использует 123 йод. 16
5. Определение уровня ТТГ и тироидных гормонов.
Исследование уровня ТТГ и тироидных гормонов (свободный тироксин и трийодтиронин) показано всем с подозрением на патологию щитовидной железы. В настоящее время целесообразнее проводить исследование именно свободных фракций тиреоидных гормонов в комплексе с определением уровня ТТГ.
6. Определение уровня тироглобулина в крови.
Повышенное содержание тиреоглобулина в крови свойственно многим тиреоидным заболеваниям, его выявляют и в течение 2-3 недель после пункционной биопсии, а также в течение 1-2 месяцев после операции на щитовидной железе.
7. Определение уровня кальцитонина в крови.
У больных, имеющих отягощенный семейный анамнез по медуллярному раку щитовидной железы (синдром множественной эндокринной неоплазии 2-го и 3-го типов), следует в обязательном порядке определять уровень кальцитонина в крови. Во всех других случаях определение кальцитонина не показано.
Нормальное содержание кальцитонина в крови не превышает 10 пг/мл.Уровень данного маркера более 200 пг/мл, является важнейшим диагностическим критерием медуллярного рака щитовидной железы.

8. Испытание функций щитовидной железы.
Тесты функций щитовидной железы это тесты крови, используемые для оценки, насколько эффективно работает щитовидная железа. Эти испытания включают проверку стимулирующего гормона щитовидной железы (TSH), проверку тироксина (T4), трийодтиронина (T3), тест тироксин-связующего глобулина (TBG), тест трийодтиронина на уровень смол (T3RU), и долго-действующий тест стимулятора щитовидной (LATS).
Тесты проверки функций щитовидной железы используются для:

    помощи в диагностировании пониженой активности щитовидной железы (гипотиреоз), и повышенной активности щитовидной железы (гипертиреоз)
    оценки деятельности щитовидной железы
    мониторинга реакции на терапию щитовидной
Большинство рассматривают чувствительный тест на стимулирующий гормон щитовидной железы (TSH) наиболее точным показателем активности щитовидной железы. Измеряя уровень TSH, врачи могут определить даже небольшие проблемы в деятельности щитовидной железы. Поскольку этот тест очень чувствителен, отклонения в щитовидной функции могут быть определены еще до того, как больной начнет жаловаться на симптомы.
TSH "говорит" щитовидной железе выделять гормоны тироксин (T4) и трийодтиронин (T3). Перед использованием тестов TSH использовались стандартные анализы крови, измеряющие уровень T4 и T3 для определения того, работает ли щитовидная железа должным образом. Тест трийодтиронина (T3) измеряет количество этого гормона в крови. T3, как правило, присутствует в очень малых количествах, но оказывает значительное влияние на обмен веществ. Он является активным компонентом гормонов щитовидной железы.

Тест тироксин-связующего глобулина (ТСГ) проверяет уровни этого вещества в крови, которые производятся в печени. ГТД привязывается к T3 и T4, предотвращает смыв гормонов из крови почками, и освобождает их тогда и там, где они необходимы для регулирования функций тела.
Тест трийодтиронина на поглощение смол (T3RU) измеряет уровни T4 в крови. Лабораторный анализ этого теста занимает несколько дней, и он используется реже, чем испытания, результаты которых доступны быстрее.
Тест стимулятора щитовидной железы длительного действия (LATS) показывает, содержит ли кровь стимулятор щитовидной железы длительного действия. Если присутствие в крови не в норме, LATS заставляет щитовидную производить и выделять аномально большое количество гормонов.
9. Компьютерная, магнитно-резонансная томография, трансмиссионная оптическая томография.


КТ и МРТ являются высокоинформативными неинвазивными методами, при помощи которых визуализируется щитовидная железа. Однако, данные исследования выполняются в настоящее время достаточно редко из за высокой стоимости и малодоступности соответствующей аппаратуры. Наряду с оценкой локализации щитовидной железы, ее контуров, формы, размеров, структуры, соотношения с прилежащими тканями, размеров и структуры регионарных лимфоузлов, КТ позволяет определить денситометрическую плотность образований в щитовидной железе. Как КТ так и МРТ являются методами выбора в диагностике загрудинного зоба. Компьютерная томография (КТ) - метод рентгеновского исследования, основанный на неодинаковой поглощаемости рентгенологического излучения различными тканями организма, в основном используется в диагностике патологии щитовидной железы, брюшной области (печень, желчный пузырь, поджелудочная железа, почки, надпочечники и др.)
Компьютерная томография позволяет получить сведения о конфигурации размерах, расположении и распространенности любого образования, поскольку этот метод дифференцирует по плотности твердые и мягкие ткани.
Магнитно-резонансная томография (МРТ) - инструментальный метод диагностики, с помощью которого в эндокринологии проводится оценка состояния гипоталамо-гипофизарно- надпочечниковой системы, скелета, органов брюшной полости и малого таза.

МРТ позволяет получить сведения о конфигурации костей, размерах, расположении и распространенности любого образования, поскольку этот метод дифференцирует по плотности твердые и мягкие ткани.
МРТ, в последние годы, приобретает все большее значение в диагностике патологии гипоталамо- гипофизарной области и становится методом выбора при обследовании больных с подозрением на наличие поражения именно этой области (рис.1.7).


Рис.1.7. Подготовка к МРТ.
В процессе магнитно-резонансной томографии подвижный стол с пациентом двигается через "туннель", генерирующий электромагнитное поле, которое в свою очередь создает излучение, позволяющее получить трехмерное изображение внутренней структуры организма.

Диагностируемые при помощи МРТ заболевания:

    ? опухоли гипофиза (например, пролактинома , болезнь Иценко-Кушинга)
    ? образования надпочечников (например, синдром Иценко-Кушинга, альдостерома, феохромоцитома)
    ? остеопороз
    ? и др.
Преимущества МРТ:
    ? позволяет получить срезы толщиной 2-3 мм в любой плоскости
    ? возможность по характеру сигнала судить не только о наличии образования, но и о его внутренней структуре (кровоизлияния, кисты и т.д.)
    ? отсутствие воздействия на пациента ионизирующей радиации и практически полная безвредность, что имеет значение при обследовании детей, а также, при необходимости, многократных повторных исследований.
Ещё более современным методом томографии, но пока ещё широко не внедрённым в практику, стала трансмиссионная оптическая томография (ТОТ), использующей практически безвредное для человека маломощное (порядка десятков мВт) излучение ближнего ИК-дапазона (рис. 1.8.). Потенциальные преимущества ТОТ отнюдь не исчерпываются её безопасностью. Использование ИК-излучения, хорошо поглощаемого гемоглобином в окси- и дезокси-состояниях (на разных длинах волн) позволяет получать пространственное распределение степени оксигенации тканей, что невозможно в других методиках. Использование излучения со специфичными длинами волн позволит так же определять пространственное распределение НАД (NAD), НАД + (NADH), триптофана, различных цитохромов (билирубин, меланин, цитохром-оксидаза) и концентрации воды. Всё это позволяет не только успешно и своевременно диагностировать ряд заболеваний (дисплазия, опухоли, тромбоз, гематомы), но и получать информацию о метаболических процессах и функционировании различных органов в динамике. В частности, оптическая томография позволит в реальном масштабе времени наблюдать пространственное распределение насыщенности тканей водой, pH-фактора. 17

Рис. 1.8. Система CTLM - один из первых в мире серийных оптических томографов.
10. Иммунногистохимическое исследование ткани опухолей щитовидной железы.
Проводятся в ткани опухолей щитовидной железы, получаемой в результате операции. Основная цель данного исследования - прогностическая. В ткани щитовидной железы определяют наличие таких веществ как р53 (генсупрессор роста опухоли), CD44, Met (протеогликаны, ответственные за метастазирование), РТС, ras-онкогенов (онкогены, регулирующие опухолевую прогрессию) и других. Наиболее важным в клинической практике является выявление иммуннореактивности р53, Met и РТС в ткани раков щитовидной железы. Наличие данных маркеров в ткани опухоли - это признак быстрого (в течение 2-5 месяцев) развития метастатической болезни у прооперированного пациента. Исследование является дорогостоящим и требует специального лабораторного оборудования. В настоящее время определение опухолевых маркеров в основном проводят в специализированных онкологических клиниках по определенным показаниям, а именно - при наличии у больного других прогностических признаков рецидива опухоли или развития метастатической болезни (низкодифференцированный рак щитовидной железы, возраст больного старше 55 лет, инвазия окружающих тканей опухолью и др.). 18
11. Иммунологические методы.
К иммунологическим методам в первую очередь относят иммуноферментный анализ (ИФА). ИФА - метод выявления антигенов или антител, основанный на определении комплекса антиген-антитело за счет:

    предварительной фиксации антигена или антитела на подложке;
    добавления исследуемого образца и связывание фиксированных антигена или антитела с антигеном-мишенью или антителом-мишенью;
    последующего добавления антигена или антитела, меченного ферментативной меткой с ее детекцией с помощью соответствующего субстрата, изменяющего свою окраску под действием фермента. Изменение цвета реакционной смеси свидетельствует о присутствии в образце молекулы-мишени.Определение продуктов ферментативных реакций при исследовании тестируемых образцов проводят в сравнении с контрольными пробами.
До появления методов ИФА диагностика заболеваний щитовидной железы строилась на анализе клинической картины, которая далеко не всегда четко отражает развитие патологии и проявляется на достаточно поздних ее этапах. Сегодня методы ИФА являются основными для выявления отклонений в функции щитовидной железы, постановке дифференциального диагноза и осуществления контроля за проводимым лечением. 19
Исследование уровней антитиреоидных антител – иммунохемилюминесцентный метод . Исследована распространенность антител к антигенам ткани щитовидной железы: тиреоглобулину, тиреоидной пероксидазе и рецептору ТТГ у пациентов с диффузным токсическим зобом и эндокринной офтальмопатией. При обследовании у таких пациентов отмечается высокий уровень антител к рецептору ТТГ, который снижается на фоне тиреостатической терапии. 20 Показано, что определение антител к рецептору ТТГ и тиреоглобулину должно служить дополнительным диагностическим критерием при обследовании. 21
Методы определения антител к рецептору ТТГ:
1. Определение TBII
1.1. Радиорецепторный метод
1.1.1. С использованием свиного рТТГ (TRAK)
1.1.2. C использованием человеческого рТТГ, экспрессированного СНО-клетками (СНО-R)
1.1.3. С использованием рТТГ, экспрессированного лейкемическими летками (K562)
1.2. FACS
1.3. Иммунопреципитация
2. Биологические методы определения стимулирующих (TSAb) и блокирующих (TBAb) антител
2.1. Оценка продукции цАМФ (определяется с помощью РИА)
2.1.1. в FRTL-5 клетках
и т.д.................

О состоянии эндокринной системы можно судить опосредованно уже по проведенному исследованию кожи, подкожно-жировой клетчатки, физическому развитию, соматометрии, т. к. большинство эндокринных желез недоступно для непосредственного исследования, за исключением щитовидной железы, яичек у мальчиков и вилочковой железы у грудных детей при ее увеличении.

Пальпация щитовидной железы проводится согнутыми пальцами рук, которые глубоко заводятся за наружные края грудино-ключично-сосковых мышц и постепенно проникают на заднелатеральную поверхность боковых долей щитовидной железы. Большие пальцы рук располагают на передней поверхности боковых долей железы. При глотании железа смещается вверх, и ее скольжение в это время по поверхности пальцев в значительной степени облегчает пальпаторное исследование. Перешеек щитовидной железы исследуют при помощи скользящих движений пальцев по его поверхности в направлении сверху вниз, к рукоятке грудины. При пальпации щитовидной железы необходимо отметить ее размеры, особенности поверхности, характер увеличения (диффузное, узелковое, диффузно-узелковое), консистенцию ее размягченных отделов, подвижность (смещаемость при глотании), пульсацию.

Пальпация яичек: необходимо отметить опущены или не опущены яички в мошонку, отмечают форму, консистенцию, наличие уплотнений, водянки и т. д., длинник и поперечник яичек.

Увеличенную вилочковую железу можно определить перкуторно. Перкуссия тихая, непосредственная аналогично определению симптома чаши Философова (см. органы дыхания). Наличие притупления за пределами грудины является подозрительным на увеличение вилочковой железы.

К исследованию эндокринной системы относят и симптомы повышенной механической возбудимости мышц (при спазмофилии). С этой целью определяют:

1. Симптом Хвостека - поколачивание перкуссионным молоточком по fossa canina приводит к сокращению мышц века, а иногда и верхней губы.

2. Симптом Труссо - при накладывании жгута или сжатии середины плеча рукой рука ребенка принимает форму руки акушера (карпопедальный спазм).

3. Симптом Люста - при постукивании молоточком позади головки малоберцовой кости или при сжатии икроножной мышцы между средней и нижней третью получаем отведение стопы.

4.3.1. Методы определения гормонов

В настоящее время наиболее используемыми в клинической практике методами определения гормонов являются:

Радиоимунный,

Иммунорадиометрический,

Радиорецепторный,

Химические методы и другие.

До конца 60-х годов единственным методом определения уровня гормонов был биологический, основной принцип которого заключался в том, что в биологическую систему (животное, орган, ткань) вводится проба, содержащая неизвестное количество гормона и по степени выраженности ответной реакции определяется уровень гормона в ней в биологических единицах действия. Так, пролактин дозозависимо стимулирует рост эпителия зоба голубей, тестостерон стимулирует рост предстательной железы у неполовозрелых и кастрированных крыс.

Радиоиммунный анализ (РИА) определения гормонов основан на конкурентном связывании меченых радиоактивной меткой и немеченых гормонов со специфическими антителами. Гормон выступает в роли антигена. Преимуществами РИА являются высокая чувствительность, высокая специфичность, точность, воспроизводимость и простота выполнения. Недостатком – использование радиоактивных изотопов, что определяет ограниченный срок годности тест–наборов.

Иммунорадиометрический анализ (ИРМА) - это модификация РИА, в которой радиоактивной меткой маркируется не антиген (гормон), а специфические антитела.

Радиорецепторный анализ (РРА) – вместо антител к гормонам используются их собственные рецепторы.

Помимо радиоактивной метки, в качестве маркеров в гормональном анализе могут использоваться ферменты (иммуноферментный анализ ) и люминисцирующие субстанции (люминисцентный анализ ).

С помощью химических методов определяют метаболиты гормонов и их предшественников (например, норадреналина и адреналина, дофамина, серотонина в моче). Определенеие содержания гормонов в крови дает более надежные и точные результаты.

Определение гормонов производят в биопсированном или секционном материале.

4.3.2. Инструментальные методы



Инструментальные методы завершают диагностический поиск при заболевании эндокринных желез. Наиболее часто используют: ультразвуковое исследование (УЗИ), рентгенографию, компьютерную томографию (КТ), магнитно-резонансную томографию (МРТ). Кроме того, применяются специальные методы, такие как ангиография с селективным забором крови, оттекающей от эндокринной железы для определения гормонов, сцинтиграфия (радиоизотопное исследование) щитовидной железы, надпочечников, денситометрия костей.

Ультразвуковое исследование наиболее часто используется в эндокринологии. Принцип метода заключается в том, что датчик с пьезокристаллом посылает ультразвуковые волны в тело человека, а затем воспринимает отраженные импульсы, преобразуя их в электрические сигналы, которые через усилитель попадают на видеомонитор. УЗИ помогает определять размеры и эхоструктуру органа, а также проведение пункционной биопсии органов.

Компьютерная томография основана на получении «среза» тела путем компьютерной обработки данных о поглощающей способности тканей при прохождении через них коллимированного пучка рентгеновских лучей. В компьютерных томографах испускаемый трубкой узкий рентгеновский пучок, проходя через исследуемый слой, улавливается детекторами и обрабатывается. Каждая ткань в зависимости от плотности по разному поглощает излучение. Минимальная величина патологического очага, определяемая с помощью КТ, колеблется от 0,2 до 1 см.

Магнитно-резонансная томография (МРТ) основана на возможности изменения резонансных и релаксационных процессов в протонах водорода, находящихся в статическом магнитном поле в ответ на применение радиочастотного импульса. После прекращения импульса протоны возвращаются в исходное состояние, «сбрасывая» лишнюю энергию, которая улавливается прибором. Построение изображения осуществляется по разнице энергий из различных точек. МР-томографы позволяют делать срезы толщиной 0,5 – 1 мм. Достоинствами МРТ являются неинвазивность, отсутствие лучевой нагрузки, «прозрачность» костной ткани, высокая дифференциация мягких тканей.

Генетический анализ

Молекулярно-биологическая диагностика является высокоинформативным методом при диагностике многих эндокринных заболеваний.

Все наследственные заболевания разделяются на три основные группы хромосомные, генные и заболевания с наследственной предрасположенностью.

Для диагностики хромосомных эндокринных заболеваний применяют метод кариотипирования и исследование полового хроматина (синдромы Дауна, Шерешевского-Тернера, Клайфельтера). Для выяснения генных мутаций широко применяют метод составления родословных (генеалогического древа).

Развитие заболеваний с наследственной предраспорложенностью определяется взаимодействием определенных наследственных факторов (мутаций или сочетаний аллелей и факторов внешней среды). Среди заболеваний этой группы наиболее изученными являются аутоиммунные заболевания, такие как сахарный диабет, гипокортицизм, гипо- и гипертиреоз.

Помимо предраспроложенности к заболеванию генотип может определять его прогноз, развитие осложнений, а также прогноз эффективности применяемых методов лечения.